Ultrasound physics

Frequency
- Standard machine has 2-15 MHz
 - 2 = great depth but poor resolution
 - 15 = great resolution but poor depth
- Probes can have multiple frequencies
 - Chose probes with around 5MHz for general practice
 - Eg use 3 for big dogs and 7 for small dogs

Probes
- Curvilinear
- Linear
- Phased array
 - Good for near field structures
 - Severely distorts structures in the near field
 - Small footprint can go between ribs

Gain
- Not the amount of sound that we admit but the amount that we collect – not how loud you are shouting but how loud you are listening
- Amplify sound returning to increase contrast of structures

Tissues
- Fluid = anechoic (no echos)
 - All sound waves go through fluid and none bounce back
 - Black on U/S
 - Acoustic enhancement - Tissues deep to fluid structures have increased echogenicity (more hyperechoic) because more sound waves reaching that tissue in comparison to a structure of similar depth where sound had to travel through soft tissue
- Air = hyperechoic
 - Acoustic shadowing - All sound reflected back to probe and none goes through to deeper tissues
 - Reverberation - If very superficial will see hyperechoic (white) lines below the gas structure due to sound waves returning to probe prematurely and bouncing back multiple times. ARTEFACT
 - White on U/S
- Bone = hyperechoic
 - Acoustic shadowing - All sound reflected back to probe and none goes through to deeper tissues
 - White on U/S
- Soft tissues
 - Part of sound travels through to deeper structures and part of the sound reflected back
 - Grey on U/S
 - Based on different tissue density and thickness the echogenicity changes between tissues. Can use to compare
 - Eg Liver hypoechoic compared to renal cortex
- Structures with rounded contours
 - Eg kidneys, bladder, gall bladder
 - Anechoic deeper structures as rounded structures change the direction of the sound waves as it bounces off the edges instead of back to the probe

Depth of structures
- Probes emit sound 1% of the time and listen for sound coming back 99% of the time
 - Short burst of ultrasound emitted and then time taken to reflect sound back measured to judge depth of each tissue structure
Radiology of the Thorax

Normal Anatomy

Atomic number
- Similar atomic number = littler contrast = unable to see on xray
 - Eg fluid and soft tissue
 - Cant see oesophagus in thorax unless pathology present
- Different atomic numbers = large contrast = visible on xray

When to take a radiograph based on respiration
- Peak inspiration maximises lung contrast
 - Lung field will look blacker
 - Structures in thorax easier to see
 - Lateral radiograph
 - Caudodorsal border of lungs at T12
 - Cranial margin of lungs at level of 1st rib
 - Cardiac silhouette separated from diaphragm
 - VD/DV radiograph
 - Caudolateral aspect of lung at T10
 - Diaphragmatic cupula at mid T8
- Expiration minimises contrast
 - Much harder to see structures
 - Heart and diaphragm touching

Ribs
- Always examine one by one – very easy to miss pathology
- Larger rib = closer to xray tube
- Smaller rib = dependant

Caudal vena cava
- Right side of the body
- Comes out of the right crus of the diaphragm

Diaphragm
- Features
 - Right crura
 - Blends with caudal vena cava
 - Left crura
 - Cupula
- Most dependant crus placed cranially

Oesophagus
- Location - dorsal to tracheal in cranial thorax
 - Dilation/distension will push trachea ventrally in lateral projection

Effect of positioning
- diaphragm
 - Left side down (left lateral view)
 - Caudal vena cava blends with more caudal crus (right crus)
 - Diaphragmatic crura may sometimes to cross over
 - Crura diverge from each other
 - Not always
 - Air within fundus visible caudal to the left crus
 - Right side down (right lateral view)
 - Diaphragmatic crura appear parallel
 - Right crura more cranial
- Air within fundus of stomach behind left crura

- Ventrodorsal view (Dog lying on its back)
 - Three separate domes structures = 2 crura + cupula
- Dorsoventral view (dog in sternal recumbency)
 - Single domed diaphragm

- Heart
 - Ventrodorsal view
 - Cardiac silhouette appears more elongated
 - Dorsoventral view
 - Cardiac silhouette appears more oval shaped and upright
 - Right lateral view
 - Cardiac silhouette oval/egg shaped
 - Left lateral view
 - Cardiac silhouette more circular

- Lungs
 - Dorsoventral view
 - Lungs in a more anatomical position
 - Better visualisation on caudal lobar pulmonary vessels and bronchi
 - Cranial vessels visualised with lateral view
 - Accessory lung long less aerated than in VD
 - Better visualisation of dorsal aspects of lung (not dependant in this view)
 - Ventrodorsal view
 - Accessory lung long area btw cardiac silhouette and diaphragm is elongated
 - Better visualisation of ventral aspects of lung (not dependant in this view)
 - Better visualisation of caudal thoracic masses as lung not superimposed over diaphragm
 - Lesion location
 - In lateral recumbency dependant lung lobe collapse due to
 - Heart compressing lung
 - Reduced movement of dependant thoracic cage
 - Cranial movement of the dependant part of the diaphragm
 - Lesions may only be visualised on xray when on the non-dependant side
 - Dependant lung lobes become compressed and increase in density
 - Increase in dependant lung lobe density can mask lesions as the tissue contrast is not great enough to form an image
 - Body condition
 - Obese animals
 - Thoracic structures harder to see due to shadowing from fat
 - Thin animals
 - Thoracic structures clearly visible

Pathology

Thoracic wall

Extra pleural sign
- Cause – thoracic wall mass invading thoracic cavity
- features
 - Mass has convex margin facing lung
 - Cranial and caudal margins taper along walls - broad based
- Differentiating pulmonary and pleural masses?
 - Pulmonary mass touching thoracic wall
- Angle less than 90 degrees
- Unable to see lung vessels (surrounded by soft tissue)
 - Thoracic wall mass extending into thoracic cavity
 - Angle greater than 90 degrees

Flail Chest
- Cause – multiple rib fractures eg trauma
 - dorsal and ventral aspects of at least 2 ribs
- gross – segment of thorax depresses on inspiration (as chest expands) and expands on expiration (as chest constrcts)

Rib infection - uncommon
- cause
 - penetrating wound
 - secondary to septicaemia
- can not differentiate rib osteomyelitis from neoplasia radiographically
- bone can be lytic and/or productive
- need biopsy

Rib neoplasia
- primary
 - osteosarcoma
 - chondrosarcoma
- secondary
 - urogenital carcinoma
 - mammary carcinoma
- features
 - often lytic
 - periosteal/cortical response
 - generally spread intrathoracically instead of peripherally
 - pleural effusion common

Determining healed fracture from neoplastic bone lesion
- healed fracture
 - history of trauma
 - overrides rib margins (callus)
 - multiple adjacent ribs involved?
Diaphragm

Diaphragmatic Hernia
- **Causes**
 - traumatic diaphragmatic hernia
 - radiographic signs
 - abdominal viscera within thorax
 - cranial displacement of abdominal structures
 - displacement of thoracic structures (heart, mediastinum, lungs)
 - usually cranially and laterally
 - partial/complete loss if thoracic diaphragmatic surface outline
 - cause
 - pleural fluid
 - silhouetting of consolidated lung/abdo structures
 - other radiographic diagnostics
 - oral barium sulphate to contrast stomach and intestines
 - multiple xray views
 - remove pleural fluid and repeat radiographs
 - positive contrast medium peritoneography
 - perioneopleural diaphragmatic hernia
 - peritoneum → pleural space
 - peritoneopericardial diaphragmatic hernia
 - peritoneum → pericardial space
 - cause
 - abdo viscera herniated through congenital defect
 btw tendinous part of diaphragm and pericardial sac
 - radiographic signs
 - abdo organs in pericardial sac
 - gas
 - ingested material
 - soft tissue opacity
 - large round cardiac silhouette
 - ventral diaphragm indistinguishable
 - heart morphs with diaphragm
 - dorsal peritoneopericardial remnant on lateral view in cats
 - significance
 - may be incidental finding
 - may be associated with clinical disease
 - hiatal diaphragmatic hernia
 - part of stomach herniates through oesophageal hiatus
 - two types
 - sliding hiatal diaphragmatic hernia
 - radiographs
 - soft tissue mass adjacent to left diaphragmatic crus
 - cranial displacement of the gastric cardia
 - dilated oesophagus
 - gastroesophageal sphincter within thorax
 - paraoesophageal hiatal diaphragmatic hernia
 - radiographs
 - gastroesophageal sphincter within abdomen
Pleural effusion – fluid
- radiography
 - interlobar fissures – opaque lines define lung lobes
 - cause – fluid seeping inbetween lung lobes
 - lung retracted from thoracic wall
 - space between lung and thoracic wall is soft tissue opacity
 - can remove some fluid and take another radiograph
 - costophrenic angle blunted
 - lateral view – increased opacity dorsal to sternum
 - opacity commonly has scalloped margins
 - DV – cardiac silhouette more difficult to see
 - VD – cardiac silhouette easier to see than DV
- Pleural fluid = ALWAYS significant
 - Occasionally primary dz eg pleural neoplasia
 - Usually sign of dz elsewhere
- Pleural + peritoneal effusion = likely neoplastic/CVS dz
- Causes (cant determine cause from radiographs)
 - Congestive heart failure
 - Dogs - only every rgyht sided of right AND left combined
 - Cats - can be right or left or right and left combined
 - Pyothorax
 - Severe pulmonary disease
 - Malignant pulmonary tumours → rupture
 - Ruptured abscess
 - Trauma (haemothorax)
 - Coagulopathy → haemorrhage
 - Uncommon cause
 - Hypoproteinemia
 - Chylothorax
 - Uncommon in dogs
 - Occurs in cats w/ heart dz
 - Diaphragmatic hernia
 - Obstruction of venous return by abdo viscera → pleural effusion
 - Lung lobe torsion
 - Pulmonary contusion
 - CNS trauma
 - Not well understood pathology but thought that catecholamine release may be a contributing factor
- Asymmetrical/unilateral pleural fluid distribution
 - Usually symmetrical as mediastinum is perforate
 - Causes
 - Difference in lung lobe compliance
 - One collapses more easily
 - Eg one has previous fibrosis and scarring
 - High viscosity fluid
 - Not easily distributed to the other side
• pneumomediastinum
 • technique – if pleural fluid obscuring mediastinum
 • aspirate fluid and repeat radiographs
 • direct x-ray beam horizontal
 • ultrasound/CT instead

• **Masses based on location**
 • craniodorsal mediastinal mass
 • causes
 • oesophageal dz
 • neural/neuroendocrine tumours
 • paravertebral tumours
 • radiography
 • ventral displacement of the trachea
 • silhouette sign of the aorta
 • can’t define aortic borders as adjacent mass removes air/soft tissue contrast
 • cranioventral mediastinal mass
 • causes
 • must rule out obesity!
 • Lymphoma
 • Thymic lesions
 • Thymoma, thymic lymphosarcoma, thymic brachial cysts
 • Cranial sterna lymph node enlargement
 • Mediastinal cysts
 • Ectopic thyroid/parathyroid tissue
 • Radiography
 • Elevation of trachea +/- compression of trachea (not always)
 • Increased opacity of cranioventral thorax
 • Widening of cranial mediastinum on DV/VD
 • Caudal displacement of heart
 • Caudal displacement on cranial lung lobes
 • Middle (Perihilar) mediastinal masses
 • Causes
 • Tracheobronchial lymphadenopathy eg Lymphosarcoma
 • Mass dorsocaudal to tracheal bifurcation on lateral view
 • Chemodectoma/Heart base mass
 • Inconspicuous (most of mass contained in cardiac silhouette)
 NB heart base mass = heart base tumour, enlarged pulmonary a or enlarged right atrium
 • Radiography
 • Increased perihilar opacity
 • bronchial obstruction
 • widened caudal mainstem bronchi
 • Tracheobronchial LN
 • Accentuated ventroflexion of the distal trachea
 • large dip down instead of the normal small one
 • impingement/cranioventral displacement of the carina and principle bronchi
 • heart base tumours
 • right displacement of the trachea (cranial to carina)
 • caudodorsal mediastinal mass
 • cause
 • Esophageal lesions
 • Neural tumors
 • Hiatal hernia
 • Stomach in mediastinum
• Diaphragmatic lesions (abscess, masses, hematoma)

 o Caudoventral mediastinal mass
 ▪ Cause
 • Hernias/Diaphragmatic rupture
 • Diaphragmatic lesions
 ▪ Radiography
 • Caudal vena cava displaced, impinged or silhouetted
 • Caudal border of heart and diaphragm silhouetted
 o Can not distinguish borders
 o Appear to be connected

• Mediastinal shift
 o Ipsilateral shift – same side as lesion
 ▪ Cause
 • Unilateral decrease in lung volume
 o Contralateral shift – opposite side as lung lesion
 ▪ Cause
 • Unilateral increase in lung volume
 o Eg unilateral tension pneumothorax
 • Presence of intrathoracic mass

• Mediastinal fluid
 o Causes
 ▪ Feline infectious peritonitis
 ▪ Trauma
 ▪ Coagulopathy
 ▪ Underlying mass
 o Radiography
 ▪ Mediastinal masses
 ▪ Widening of the mediastinum
 ▪ Enlarged cardiac silhouette
 ▪ Reversed fissures – going from mediastinum into lungs

• Pneumomediastinum
 o Causes, in decreasing order of likelihood:
 ▪ Air escaping into the lung interstitium from sites of alveolar rupture
 • Blunt thoracic trauma
 • Hyperinflation during anesthesia or resuscitation
 ▪ Puncture wound in the neck
 ▪ Tracheal rupture
 • Trauma
 • Erosion from neoplasia or inflammation.
 • Cats - overdistention of the ET tube cuff
 ▪ Esophageal perforation
 • Trauma
 • Neoplasia
 • Inflammation
 ▪ Extension of retroperitoneal gas into the mediastinum
 ▪ Presence of a gas-producing organism
 • Clostridium
 o Radiography