<table>
<thead>
<tr>
<th>Vectors</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrovirus</td>
<td>Long lasting gene expression</td>
<td>Only infects dividing cells</td>
<td>~37% of Gene Therapy Trials</td>
</tr>
<tr>
<td></td>
<td>Efficiently enters cell</td>
<td>Low yield (hard to produce)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential insertional mutagenesis</td>
<td></td>
</tr>
<tr>
<td>Lentivirus</td>
<td>Long lasting gene expression</td>
<td>Potential insertional mutagenesis</td>
<td>~10% of Gene Therapy Trials</td>
</tr>
<tr>
<td></td>
<td>Will infect dividing and non-dividing cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus</td>
<td>Efficiently enters cell</td>
<td>Immunogenic – rapidly cleared from the body</td>
<td>~20% of Gene Therapy Trials</td>
</tr>
<tr>
<td></td>
<td>High delivery rate</td>
<td>Can cause inflammation and tissue damage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No chromosomal integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adeno-associated Virus</td>
<td>Long term expression</td>
<td>Difficult to produce in high quantities</td>
<td>1% of Gene Therapy Trials</td>
</tr>
<tr>
<td></td>
<td>Wide host cell range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herpes Simplex Virus</td>
<td>Produced at high levels</td>
<td>Immunogenic – rapidly cleared from the body</td>
<td>~6% of Gene Therapy Trials</td>
</tr>
<tr>
<td></td>
<td>Can carry lots of DNA</td>
<td>Potentially toxic</td>
<td></td>
</tr>
<tr>
<td>Liposome</td>
<td>Not immunogenic</td>
<td>Low rate of delivery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can carry lots of DNA</td>
<td>Transient expression</td>
<td></td>
</tr>
<tr>
<td>Plasmid</td>
<td>No viral component</td>
<td>Transient expression</td>
<td>3% of Gene Therapy Trials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difficult to target specific tissues</td>
<td></td>
</tr>
</tbody>
</table>

- Emerging Approaches
 - **Targeted Cell Delivery** - integrative technique of cell mediated transfection
 - Specific antibodies are used to bind DNA to target cells
 - **Transposons**
 - DNA injected into the bloodstream in lipid capsules
 - Lipid capsules enter cells
 - Cells make transposase enzyme from the gene
 - Transposase cuts out a gene and inserts into a random spot on the genome
 - **Antisence technology** – antisense drug disrupts translation to result in the prevention of protein synthesis
DNA Fingerprinting
- Testing for – parentage verification, ID, forensics
 - Can replace conventional methods
 - Blood grouping
 - Ear tagging
- Advantages
 - Uses very little amounts of DNA
- Limitations
 - Initial development requires detailed DNA sequence information

Method
- **Sample is collected** and transported
- DNA/RNA is **extracted** from the sample
- **PCR** – determination of normality/affected from visualisation of:
 - Presence or absence of PCR Product
 - Variation in PCR product length or composition
 - Number of PCR products
- **PCR process**
 - Temperature raised to **denature** DNA into two single strands
 - **Primers** are designed to test for specific pathogens and bind to matches on the target DNA sequence
 - **Primers** mark sequences to be copied
 - **PCR product is cut** by restriction enzymes depending on the presence of certain sequences
 - **PCR amplifies** an affected segment of DNA
 - **Polymerase** add nucleotides to form two strands
 - Strands are denatured in another cycle
 - **Process is repeated several times**
 - Thus producing different lengths of PCR products
 - Ie – normal PCR is cut, affected isn’t cut

PERSONALISED MEDICINE
- Assumptions in drug development and treatment
 - **Dose, efficacy and treatment is determined by a mean response**
- Individuals will respond differently to drugs
- Disease progression may have subtle differences between patients
- Drug development is expensive thus are made for mass production and depend on demand

- **Personalised Medicine** – utilising genomic and proteomic technologies to **determine the most appropriate treatment** rather than generate a new drug for an individual
 - Screen for predisposition
 - Specifically diagnose and characterise the correct disease
 - Monitor effectiveness of treatment and disease progression

Example – Cancer Treatment
- Diagnosis – cancer is determined by tumor morphological characteristics
 - Acute Lymphoblastic Leukemia – lymphoblast origin cells
 - Acute Myeloid Leukemia – myeloid origin cells
 - Both forms of Leukemia decrease blood cell production
- Treatment – chemotherapies used for maximal efficacy and minimal toxicity
 - Treatments for ALL and AML are different
 - Incorrect treatment decreases efficacy and increases side effects
- Therefore Personalised Medicine is seen to be concerned with the correct diagnosis

- **Molecular Characterisation** – differences in gene expression on protein and mRNA levels to allow differentiation between diseases
 - Gene expression is characterised through the use of a Microarray
 - Aggregate pattern of expression between diseases are different
 - Different diseases have up and down regulation of different genes
 - Red is up-regulation, blue is down-regulation
 - Allows classification between disease types and thus the correct treatment can be applied

- Platforms
• Transcription is reduced and cells appear superficially to be dead
• Cells exit the cell cycle and stall at the G0 stage to become suitable donors

Recycling
• Nucleus from a cultured cell is transferred to an enucleated oocyte
• Embryo is cultured in vitro to the morula or blastocyst stage
• Embryo is disaggregated and the nuclei are transferred to new enucleated oocytes
• Recycling is repeated for additional cycles

Nuclear Transfer Method
- **Enucleated Oocyte** – no nucleus in the oocyte
- **Cell grows in tissue culture**
- **Cell is transferred** from culture with an injection pipette so that the cell and oocyte membranes touch
- **Electric pulse** is applied to fuse the membranes
- **Cell nucleus enters the oocyte**
- **Electric pulse** activates cell division

Applications of Cloning
- **Elite Animals** – propagated
- **Regeneration** of animals from cells in tissue culture – potential to modify, select and specifically isolate events
 - **Gene insertion and expression**
 - **Gene knockouts** via homologous recombination – gene function can be analysed and used for xenotransplantation
- **Xenotransplantation** – transplantation of genes between species
 - Galactose alpha 1,3 galactose – disaccharide impeding xenotransplantation of pig organs into humans causing hyperacute rejection
 - Human immune system recognise galactose as foreign to induce an immune response
 - Therefore by knocking out the enzyme causing rejection, transplantation will work

Problems in Clones
- **Reduced life span**
 - Inbred mice used in a study – essentially genetically identical
 - 85% of naturally reproduced mice survived 800 days
 - 20% nuclear transfer mice survived 800 days
- **Inefficient** - Only a small percentage (0-5%) survive to birth
- **High perinatal mortality** (30-100%)
- **Patterns of gene expression can be abnormal**
 - Eg – X-inactivation abnormality causes death
 - Production of XIST
 - XIST – “X-inactive specific transcript” non-coding RNA inactivating one X chromosome to prevent further transcription
 - Healthy cloned animals have regular X-inactivation, identical to non-cloned animals
 - Unhealthy cloned animals have an abnormal X-inactivation pattern

RECOMBINANT DNA
- **Recombination** – natural process of exchange of DNA
 - **Eukaryotic** – occurs during meiosis between chromosomes
 - **Prokaryotic** – occurs during conjugation
- **Recombinant DNA Technology** – new combinations of DNA fragments are created (unnatural process)
- **Key Aspects**
 - **Cutting** and **Joining** DNA Fragments
 - **Vectors** containing DNA
 - **Hosts** for propagating vectors
- **Restriction Enzymes** – cut DNA sequences to form fragments
 - Restriction endonuclease recognise specific sequences in DNA and cut in or near the recognition sequence
 - Ie - EcoRI cuts between G-A
 - Restriction enzymes have recognition sites 4, 6, or 8 nucleotides long
 - 4 Base – very common, expected to cut DNA into small pieces every 256 base pairs
REASONS FOR RECOMBINANT DNA

- **Analysis** – cloning and characterisation of genes and genomes to determine their DNA sequence
 - Genomic sequences, libraries, large insert clones, expressed sequences, cDNA libraries, expression arrays
- **Protein Expression** – expression of protein in other organisms or systems of gene regulation

ANALYSIS OF EXPRESSED GENES

- **Production of cDNA**
 - Primer **binds** to the Poly-A tail of mRNA
 - **Reverse transcriptase** synthesises a single strand of DNA that is complementary to RNA
 - **DNA Polymerase** synthesises a 2nd strand of DNA to form cDNA
 - cDNA **cloned into a plasmid or phage vector**
 - All expressed genes will be present in a library of cDNA clones
 - Fragments of **randomly chosen clones are sequenced** to allow identification as Expressed Sequence Tags (ESTs)
- **Expression Arrays**
 - **Composition** – a set of identified DNA fragments on a glass microarray slide
 - **Function** – used for analysing changes in expression of genes due to environmental or genetic modification
- **Measuring levels of expression**
 - mRNA **collected** and treated
 - cDNA **synthesised**
 - Control cDNA labelled with **red** dye
 - Treated experimental cDNA labelled with **green** dye
 - **Hybridisation (expression) of cDNA into an expression array**
 - Spots with increased expression appear green
 - Decreased expression appear red
 - Unchanged expression appear yellow-brown
 - Intensity of colour on each array is proportional to the number of cDNA molecules
- **Proteomics**
 - Alternative to expression arrays
 - **Function** – qualitative and quantitative analysis of protein expression
 - Proteins resolved as unique spots by electrophoresis
 - Analysis of charge and size by mass spectrometry allows identification of spots
- **Protein Expression Systems**
 - DNA Recombinant technology allows the expression of eukaryotic genes in prokaryotic species (and vice versa)
 - **Obstacles**
 - Prokaryotes do not recognise introns, signal peptides (sequences) and other signals
 - Intronless Prokaryotic genes do not function in higher eukaryotes
 - **Bacterial Expression Vector**
 - **PI** – Promoter controlled by a repressor protein
 - **EK** – Enterokinase cleavage site allowing protein of interest to be cleaved from the fusion protein
 - **Ie** – unwanted sequence of thioredoxin is removed by cleavage at this site
 - Proteins of interest are between EK and **Term**
 - **Positive Selectable Marker** – **Amp**
 - **Bacterial cells produce protein**
 - **Cells burst and release proteins**
• Cancer Cells
 o Often have cytogenic abnormalities
 o Characteristic - identified by a capacity to multiply
 ▪ Cell proliferation – normal physiological process resulting from cellular mechanisms regulating cell cycle and cell survival
 • Cell proliferation requires multiple mutations before cancerous self-proliferation is noticeable or dangerous
 ▪ Progenitor cells are responsible for renewal of tissues thus most cancers arise from progenitor stem cells
 ▪ Cells undergo cell cycles – natural life span concludes with apoptosis
 • Failure to undergo apoptosis or senescence is a feature of neoplasia
 • Cell survival is controlled by anti-apoptotic or pro-apoptotic factors
 • Cancer cells often over-express telomerase
• Changes in cells favouring malignancy
 o Uncontrolled proliferation due to:
 ▪ Self-sufficient growth signals
 ▪ Insensitivity to growth-inhibition signals
 ▪ Evasion of apoptosis
 o Sustained angiogenesis
 o Invasion and metastasis
 o Escape from tumour immunity
 o Defects in DNA repair
• Uncontrolled proliferation is caused by:
 o Hyperactive Oncogenes (growth stimulatory genes)
 ▪ Oncogenes – promote autonomous cell growth by removing the need for growth factors or mitogenic signals
 • Eg – RAS – G-Proteins involved in growth factor signal transduction
 • Eg – myc – transcription factor localised to the nucleus before associating with target genes to become a transcription activator
 ▪ Protooncogenes – counterpart from which oncogenes are derived from producing regulators of cell proliferation and differentiation
 ▪ Oncoproteins – proteins coded by oncogenes
 • Growth Factors
 • Signal Transducers – G-Proteins
 • Transcription Factors
 • Cell-Cycle – CDKs and Cyclins
 o Inactive growth inhibitory genes (tumour suppressing)
 ▪ Function – genes inhibiting cell proliferation
 • Absence causes cells to become insensitive to growth-inhibitory signals
 ▪ Mutations are recessive – thus both alleles must be damaged for mutation to occur
 ▪ Mutations can be inherited through the germ line
 ▪ Eg – rb – normally a checkpoint from G to S-Phase
 • RB dissociates from E2F transcription factor
 • Genes needed for S-Phase are then transcribed
 • Cells continue to divide without growth factors after S-Phase
 • RB prevents G1-S transition
 ▪ Eg - p53 - DNA binding protein arresting cells in G1 after genetic damage to prevent cells from dividing incorrectly
 • Acts as a transcription factor to stimulate genes in cell-cycle arrest and apoptosis

CELLULAR BIOLOGY OF DISEASE, THERAPY AND PERFORMANCE – GENERAL ANAESTHESIA

• Neurophysical changes
 o Unconsciousness – hypnosis
 o Graded reduction of motor cortex activity
 o Graded reduction of sensory cortex activity
 ▪ Graded reduction of cortex activity - dependant upon the amount of drug administered
Methodology

1. **Physical Examination** – determination of heart rate, blood pressure, respiratory function, weight, last meal, liver and kidney function
 i. **Weight** – used to determine amount of anaesthetic required
 ii. **Last meal** – important in case of possible regurgitation
 iii. **Liver function** – used to determine ability to eliminate and filter anaesthetic agent
2. **Premedication**
3. **Induction** – patient goes from a state of consciousness to unconsciousness
 i. Injectable or inhaled
4. **Maintenance** – duration of anaesthetised state
5. **Recovery** – Regaining control, consciousness, etc.

Safe Induction Agents must be:
- Predictable and reliable
- Have minimal pain on induction
- Fast acting
- Minimal side effects on other body systems
- Have a wide safety margin
- Fast and smooth recovery

EXAMPLE: THIOPENTONE

- **Structure and Characteristics**
 - **Sidechains** on barbiturates - responsible for hypnosis
 - *Increased sidechain length increases potency*
 - Replacement of oxygen atom with a sulphur atom increases the rate of action
 - **Lipophilic barbiturate** – allows agent to pass through the blood brain barrier
 - **Non-ionised at body pH** – facilitates diffusion through membranes
 - **Weak base** – binds to alphal-acid glycoprotein, haemoglobin, lipoproteins and other globulins
 - Majority (>90%) bind to plasma proteins
 - Application - Injected intravenously as a bolus induction agent
- **Unbound form of the drug is active**
 - **Amount is dependant upon:**
 - Total drug concentration
 - Plasma-protein concentration
 - Affinity of proteins for the drug
 - Plasma pH

Bound form of the drug acts as a reservoir

Course of Action
- Unbound thiopentone is distributed throughout the body to the highest perfused organs first – heart, kidney, liver, brain
- **Brain** – thiopentone is able to diffuse through the blood-brain barrier and binds to specific GABA receptors at neurons
 - Inhibits propagation of action potentials in neurons
 - Hypnotic effect occurs within 10-20 seconds
- **Concentration of thiopentone in the CNS constantly decreases**
 - **CNS** - Unbound drug is being slowly metabolised with every pass through the liver
 - **Muscle** - Drug diffuses down the concentration gradient from the highly perfused CNS to lesser perfused muscle tissue
 - **Fat** - Diffuses further to fat where it accumulates due to the lipophilic nature of thiopentone
 - Fat slowly releases thiopentone back into circulation where it is metabolised by the liver
- **Metabolism** – metabolised in the liver to become hydrophilic then excreted in aqueous urine
 - **Catalysed** by cytochrome P450 system
 - **Side chain is oxidised and oxygen replaced by sulphur**
 - **Non-lipophilic form cannot cross the blood-brain barrier**
 - Rates of elimination
 - T1/2 at 2-6 minutes – diffusion into tissues of high blood flow
 - T1/2 at 30-60 minutes – diffusion into adipose tissues
 - T ½ at 5-10 hours – elimination phase
- **Thiopentone is a good induction agent but poor maintenance agent**
 - due to accumulative effects
 - Requires constant readministration to maintain hypnosis
 - Causes vasodilation of blood vessels
 - Respiratory depression
 - Prolonged recovery